Large Scale Graph Algorithms

A Guide to Web Research: Lecture 2

Yury Lifshits

Steklov Institute of Mathematics at St.Petersburg

Stuttgart, Spring 2007

2/34

Outline

- 1 Family of Problems: Finding Strongest Connection
 - Problem Statement and Applications
 - Variations of Strongest Connection Problem
- Max-Intersection Problem
 - Statement and Naive Solutions
 - Hierarchical Schema Solution
- Concluding Remarks
 - Overview of Related Research
 - Open Problems

Talk Objective

1/34

To pose an abstract computational problem on graphs that has a huge list of applications in web technologies

Part I

Family of Problems: Finding Strongest Connection

Problem statement
Applications
Variations of the problem

Strongest Connection Problem (SCP)

BASIC SETTINGS: a class of graphs \mathcal{G} , a class of paths \mathcal{P}

INPUT: a graph $G \in \mathcal{G}$

Allowed time for preprocessing: $o(|G|^2)$

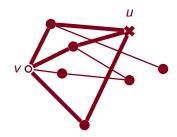
QUERY: a (new) vertex v **TASK:** to find a vertex $u \in G$

that has maximal number of \mathcal{P} -paths from v to u

Allowed time for query processing: o(|G|)

Homogeneous Graph / 2-Step Paths

Graph of coauthoring



Coauthor suggest in **DBLP**

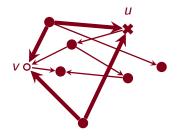
The most common coauthor of my coauthors

5 / 34

6 / 34

Directed Graph / 2-Step Paths

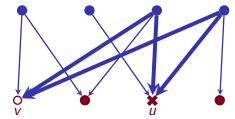
Graph of hyperlinks



Advanced option for **Google search**: link-based similar website The website that is most often co-cited with the given one

Bipartite Graph / 2-Step Paths

People



Bands

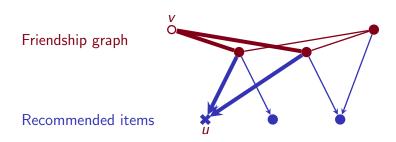
Last.fm similar music bands

The band that is most often co-listened with the given one

In general: any content-based similarity, keyword-similarity, any co-occurrence similarity

7/34 8/34

Homogeneous-Bipartite Graph / 2-Step Paths

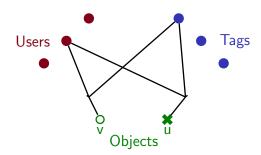


Social recommendations in networks like **Facebook**System recommends things that are popular among my friends

9/34

Tripartite 3-Graph / 2-Step Paths

Folksonomy is a set of triples < user, tag, object >

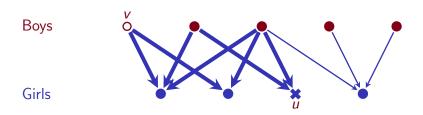


Similar websites in **Del.icio.us**, similar pictures in **Flicr**

Largest number of common tags
Largest number of common users
Largest number of common pairs < user, tag >

Bipartite Graph / 3-Step Paths

New girlfriend suggest:



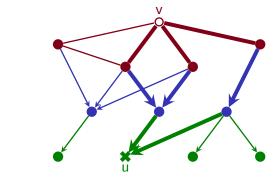
Amazon.com recommendations

Subscription recommendations for ${\bf FeedBurner},\,{\bf Google}\,\,{\bf Reader}$

Items that have the largest number of co-occurrences with my items

Multicolor-Multiparty Graph / k-Step Paths

Semantic search: "Most popular drink that is available on bars that are visited by my friends"



10 / 34

Friendship graph

Drinks in menu

Bar visiting

Variations of Strongest Connection Problem

- Directed/undirected graphs
- Weights on edges/vertices
- Task: offline, on-line, all-to-all
- Task: one best connection, k best connections
- Graph and weights are evolving with time

13 / 34

Solution Variations

Usual alternatives to exact algorithm:

- Approximate algorithms
- Randomized algorithms
- Input graph (or query) belongs to a certain distribution. Average complexity analysis
- Introducing additional assumptions
- Introducing additional input-complexity parameter
- Modifying the computation task
- Heuristics
- Look to particular cases (subproblems)

Claim

Computing strongest connection is probably the most important algorithmic problem related to web technologies*

★Personal opinion of Yury Lifshits

14 / 34

Part II Max-Intersection Problem

Statement and naive solutions Hierarchical schema solution

This section represents a work-in-progress joint research with Benjamin Hoffmann and Dirk Nowotka

Statement of Max-Intersection Problem

In set notation:

Input: Family \mathcal{F} of n sets, $\forall f \in \mathcal{F} \mid |f| \leq k$ Time for preprocessing: $n \cdot polylog(n) \cdot poly(k)$

Query: a set f_{new} , $|f_{new}| \le k$

Task: Find $f_i \in \mathcal{F}$ that maximizes $|f_{new} \cap f_i|$

Time for query processing: $polylog(n) \cdot poly(k)$ or at most o(n)

In bipartite graph notation:

Input: Bipartite documents-terms graph, $|\mathcal{D}| = n$, $\forall d \in \mathcal{D} \quad |d| \leq k$

Query: a document d_{new} , $|d_{new}| \leq k$

Task: Find $d_i \in \mathcal{D}$ that has maximal number of common terms

with d_{new}

17 / 34

Applications of Max-Intersection (2/2)

Tripartite graphs:

- Long_Search_Queries—Web_Dictionary—Websites: given a query to find a website with maximal number of query terms
- Advertisement_Description—Keywords—Websites (e.g. AdSense Matching): find a website with maximal number of terms form advertisement description
- PC_Members—Keywords—Submissions: find a paper that has maximal number of terms that belong to expertise of the given PC member

Applications of Max-Intersection (1/2)

Homogeneous graphs:

- References in scientific papers: (1) maximal number of co-occurrences in reference list (2) maximal intersection of reference lists
- Social networks (e.g. LinkedIn): a person that has maximal connections with my direct neighborhood
- Collaboration networks (e.g. DBLP): given a scientist, to find another one with maximal overlapping of coauthors-list

Bipartite graphs:

- Websites—Words graph: find a website with maximal intersection of used terms with the given one
- Music_Bands—Listeners graph: find a band that has maximal intersection of listeners with the given one

18 / 34

Inverted Index (1/2)

Let us use documents-terms notation

Inverted index approach:

• Preprocessing. For every term produce a list of all documents that contain it

Complexity: $O(n \cdot k)$

• Query $d_{new} = \{t_1, \dots, t_k\}$. Retrieve document lists for all terms of query. Check all documents in all these k lists and return the one with maximal intersection with d_{new}

Worst case complexity: $\Omega(n)$

Let T_{max} be the maximal degree of terms. Then the query complexity is $O(k \cdot T_{max})$

19 / 34 20 / 34

Inverted Index (2/2) Rare-Term Requirement

Cheating: modify the Max-Intersection problem

New Task: Given the document d_{new} , find a document d_i such that

- It has a joint **rare term** (term that occurs in at most r documents) with d_{new}
- ② The intersection with d_{new} is maximal among all documents satisfying (1)

Observation

Inverted index can handle queries in $O(r \cdot k)$ time now

21 / 34

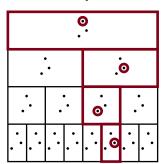
Hierarchical Schema

Table of terms:

k levels Level i is divided to 2^{i-1} cells Every cell contains k terms

Random nature of \mathcal{D} and d_{new} :

Choose random cell on the bottom level Mark all cells that are above it Choose one random term in every marked cell



Inverted Set-Index

Assume that k is extremely small, say $k = O(\log \log n)$

Inverted set-index approach:

Preprocessing. Write down all term subsets of all documents.
 Sort all these subsets in lexicographical order

Complexity: $O(n \cdot 2^k)$

• Query $d_{new} = \{t_1, \dots, t_k\}$. For every subset of query terms search it in the inverted set-index. Return the document that corresponds to the maximal subset founded in index

Complexity: $O(2^k(k + \log n))$

22 / 34

Magic Levels (1/2)

Assume that there are 2^k such "random" documents in \mathcal{D}

Notation: magic levels $q = \frac{k}{\log k + 1}$, $q' = \frac{k}{\log k}$

Theorem

With very high probability there exists $d \in \mathcal{D}$ that has the same terms from top $q - \varepsilon$ levels

Magic Levels (2/2)

Theorem

With very high probability there are no $d \in \mathcal{D}$ that has at least $q' + \varepsilon$ common elements with d_{new}

25 / 34

Part III Concluding Remarks

Overview of related research

Open problems

Algorithm for Hierarchical Schema

Preprocessing:

Encode every document as a 2k-1 sequence, every odd element lies in range [1..k], every even is 0 or 1 Construct a lexicographic tree for all encodings

Query processing:

Find the largest **prefix-match** between d_{new} and documents from \mathcal{D}

By two theorems above with very high probability maximal prefix-match is very close to maximal intersection

26 / 34

Overview of Related Research

Famous computational problems that need scalable algorithms:

- Nearest neighbors in vector spaces
- Nearest neighbors in abstract metric spaces
- Connection subgraph problem
- Collaborative filtering
- Mining association rules
- Indexing with errors

Common approach: heuristical algorithm + experimental validation

Alternative: randomized model of input + probabilistic analysis

Alternative: realistic assumption about input + exact algorithm

27 / 34 28 / 34

Algorithms for Max-Intersection

Algorithmic open problems:

- Max-Intersection for bounded tree-width graphs
- Max-Intersection in configuration model
- Max-Intersection in preferential attachment model

Conceptual open problem:

 Find simple-but-realistic assumptions allowing required exact solution of Max-Intersection

Long-term goal: to develop **theoretical** framework for scalability analysis of algorithms

29 / 34

Call for participation

Know a relevant reference?

Have an idea?

Find a mistake?

Solved one of these problems?

- Knock to my office 1.156
- Write to me yura@logic.pdmi.ras.ru
- Join our informal discussions
- Participate in writing a follow-up paper

Data Structure Complexity

On-line inclusion problem

Input: Family \mathcal{F} of 2^k subsets of $[1..k^2]$

Data storage after preprocessing: $2^k \cdot poly(k)$

Query: a set $f_{new} \subseteq [1..k^2]$

Task: decide whether $\exists f \in \mathcal{F}: f_{new} \subseteq f$

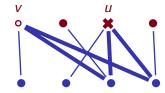
Time for query processing: poly(k)

Conjecture: the on-line inclusion problem **can not** be solved within such time/space constraints

30 / 34

Highlights

Strongest Connection family, including Max-Intersection



Open problems:

Max-Intersection in complex-networks models

Data structure complexity of on-line inclusion problem

Vielen Dank für Ihre Aufmerksamkeit! Fragen?

31/34 32/34

References (1/2)

Course homepage http://logic.pdmi.ras.ru/~yura/webguide.html

Y. Lifshits

Web research: open problems http://logic.pdmi.ras.ru/~yura/en/web-talk.pdf

J. Zobel and A. Moffat

Inverted files for text search engines
http://portal.acm.org/citation.cfm?id=1132959

C. Faloutsos, K.S. McCurley, A. Tomkins

Fast discovery of connection subgraphs
http://www.cs.cmu.edu/~christos/PUBLICATIONS/kdd04-conn-graphs.pdf

M.E.J. Newman

The structure and function of complex networks http://arxiv.org/abs/cond-mat/0303516,2003.

References (2/2)

P.N. Yianilos

Data structures and algorithms for nearest neighbor search in general metric spaces http://www.pnylab.com/pny/papers/vptree/vptree.ps

J. Kleinberg

Two algorithms for nearest-neighbor search in high dimensions http://www.ece.tuc.gr/~vsam/csalgo/kleinberg-stoc97-nn.ps

R. Agrawal and R. Srikant

Fast algorithms for mining association rules in large databases http://www.cs.indiana.edu/hyplan/dgroth/P487.PDF

33 / 34

M. O'Connors J. Herlocker

Clustering items for collaborative filtering http://www.cs.umbc.edu/~ian/sigir99-rec/papers/oconner_m.pdf