Novel Approaches to Nearest Neighbors

Random Walks. SEARCH Class.

Yury Lifshits http://yury.name

Steklov Institute of Mathematics at St.Petersburg California Institute of Technology

August 2007

Chapter I

Welcome to Nearest Neighbors!

Outline

- Welcome to nearest neighbors!
- Nearest Neighbors via Random Walks
- Oata Structure Complexity: SEARCH Class

1/27 2/27

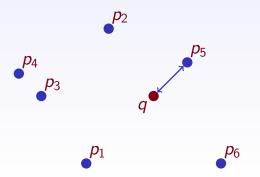
Problem Statement

Search space: object domain \mathbb{U} , similarity function σ

Input: database $S = \{p_1, \dots, p_n\} \subseteq \mathbb{U}$

Query: $q \in \mathbb{U}$

Task: find argmax $\sigma(p_i, q)$



3/27 4/27

Applications

Content-based retrieval

Spelling correction Searching for similar

DNA sequences Related pages web search

Concept matching

kNN classification rule

Nearest-neighbor interpolation Near-duplicate detection Plagiarism detection Computing co-occurrence similarity

Recommendation systems Personalized news aggregation Behavioral targeting Maximum likelihood decoding Compression MPEG

5 / 27

Brief History

1908 Voronoi diagram

1967 kNN classification rule by Cover and Hart

1973 Post-office problem posed by Knuth

1997 The paper by Kleinberg, beginning of provable upper/lower bounds

2006 Similarity Search book by Zezula, Amato, Dohnal and Batko

2008 First International Workshop on Similarity Search. Consider submitting!

6 / 27

Some Nearest Neighbor Solutions

Orchard's Algorithm LAESA Sphere Rectangle Tree k-d-B tree Geometric near-neighbor access tree Excluded middle vantage point forest mvp-tree Fixed-height Vantage-point **AESA** fixed-queries tree tree R*-tree Burkhard-Keller tree BBD tree Navigating Nets Voronoi tree Balanced aspect ratio tree Metric tree vp^s-tree M-tree Locality-Sensitive Hashing SS-tree R-tree Spatial approximation tree Multi-vantage point tree Bisector tree mb-tree

Generalized hyperplane tree

Hybrid tree Slim tree **tree**

Spill Tree Fixed queries tree

Balltree Quadtree Octree

X-tree **k-d**Post-office tree

Part II

Disorder Inequality

This section represents joint work with Navin Goyal and Hinrich Schütze

7/27 8/27

Concept of Disorder

Sort all objects in database S by their similarity to p Let $rank_p(s)$ be position of object s in this list

Disorder inequality for some constant *D*:

$$\forall p, r, s \in \{q\} \cup S : \operatorname{rank}_{r}(s) \leq D \cdot (\operatorname{rank}_{p}(r) + \operatorname{rank}_{p}(s))$$

Minimal *D* providing disorder inequality is called disorder constant of a given set

For "regular" sets in *d*-dimensional Euclidean space $D \approx 2^{d-1}$

9 / 27

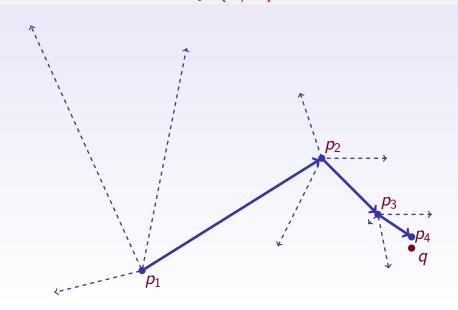
Ranwalk Informally (2/2)

Hierarchical greedy navigation:

- Start at random city p₁
- 2 Among all airlines choose the one going most closely to q, move there (say, to p_2)
- 3 Among all railway routes from p_2 choose the one going most closely to q, move there (p_3)
- 4 Among all bus routes from p_3 choose the one going most closely to q, move there (p_4)
- Repeat this $\log n$ times and return the final city

Transport system: for level k choose c random arcs to $\frac{n}{2^k}$ neighborhood

Ranwalk Informally (1/2)



10 / 27

Ranwalk Algorithm

Preprocessing:

 For every point p in database we sort all other points by their similarity to p

Data structure: n lists of n-1 points each.

Query processing:

- ① Step 0: choose a random point p_0 in the database.
- From k = 1 to $k = \log n$ do Step k: Choose $D' := 3D(\log \log n + 1)$ random points from $\min(n, \frac{3Dn}{2^k})$ -neighborhood of p_{k-1} . Compute similarities of these points w.r.t. q and set p_k to be the most similar one.
- If $\operatorname{rank}_{p_{\log n}}(q) > D$ go to step 0, otherwise search the whole D^2 -neighborhood of $p_{\log n}$ and return the point most similar to q as the final answer.

11/27

Analysis of Ranwalk

Theorem

Assume that database points together with query point $S \cup \{q\}$ satisfy disorder inequality with constant D:

$$rank_x(y) \leq D(rank_z(x) + rank_z(y)).$$

Then Ranwalk algorithm always answers nearest neighbor queries correctly. It uses the following resources:

Preprocessing space: $\mathcal{O}(n^2)$.

Preprocessing time: $O(n^2 \log n)$.

Expected query time: $\mathcal{O}(D \log n \log \log n + D^2)$.

Arwalk Algorithm

Preprocessing:

• For every point p in database we sort all other points by their similarity to p. For every level number k from 1 to $\log n$ we store pointers to $D' = 3D(\log\log n + \log 1/\delta)$ random points within $\min(n, \frac{3Dn}{2^k})$ most similar to p points.

Query processing:

- 1 Step 0: choose a random point p_0 in the database.
- From k = 1 to $k = \log n$ do Step k: go by p_{k-1} pointers of level k. Compute similarities of these D' points to q and set p_k to be the most similar one.
- 3 Return $p_{\log n}$.

13 / 27

14 / 27

Analysis of Algorithm

Theorem

Assume that database points together with query point $S \cup \{q\}$ satisfy disorder inequality with constant D:

$$rank_x(y) \leq D(rank_z(x) + rank_z(y)).$$

Then for any probability of error δ Arwalk algorithm answers nearest neighbor query within the following constraints:

Preprocessing space: $O(nD \log n(\log \log n + \log 1/\delta))$.

Preprocessing time: $\mathcal{O}(n^2 \log n)$.

Query time: $\mathcal{O}(D \log n(\log \log n + \log 1/\delta))$.

Future of Disorder (1/2)

Average disorder. If disorder inequality does not hold for a small fraction of pairs, how should we modify our algorithm?

Improving our algorithms. Is it possible to combine advantages of Ranwalk and Arwalk? Does there exist a deterministic algorithm with sublinear search time utilizing small disorder assumption? E.g., can we use expanders for derandomization?

15/27 16/27

Future of Disorder (2/2)

Disorder of random sets. Compute disorder values for some modelling examples. For example, consider *n* random points on *d*-dimensional sphere

Lower bounds. Is it possible to prove lower bounds on preprocessing and query complexities in some "black-box" model of computation?

Part III

Data Structure Complexity: SEARCH Class

17 / 27

Inclusions with Preprocessing (1/2)

Input

Family \mathcal{F} of subsets of U

Query task

Given a set $f_{new} \subseteq U$ to decide whether $\exists f \in \mathcal{F} : f_{new} \subseteq f$

Constraints

Data storage after preprocessing $poly(|\mathcal{F}| + |U|)$ Time for query processing poly(|U|)

Open problem: is there an algorithm satisfying given constraints?

Inclusions with Preprocessing (2/2)

Reformulation in SAT style:

Input

Formula \mathcal{F} in DNF with n variables

Query task

Given an assignment x to evaluate $\mathcal{F}(x)$

Constraints

Data storage after preprocessing $poly(|\mathcal{F}|)$ Time for query processing poly(n)

Open problem: is there an algorithm satisfying given constraints?

19/27 20/27

"NP Analogue" for Search Problems

Every problem in **SEARCH** class is characterized by poly-time computable Turing Machine M:

Input

Strings x_1, \ldots, x_n , $|x_i| = m$

Query task

Given string y of length m to answer whether $\exists i : M(x_i, y) = yes$

21 / 27

Tractable problems in SEARCH

Input

Strings x_1, \ldots, x_n , $|x_i| = m$

Query task

Given string y of length m to answer whether $\exists i : M(x_i, y) = yes$

Tractable solution

Preprocessing in poly(m, n) space

Query processing in poly(m, log n) time with RAM access to preprocessed database

Inclusions is in SEARCH. Is it tractable?

2 / 27

Complete problems in SEARCH (1/2)

Program Search problem:

Input

Turing machines P_1, \ldots, P_n

Query task

Given string y of length m to answer whether $\exists i : P_i(y) = yes$ after at most m steps

Open problem: is Program Search tractable?

Complete problems in SEARCH (2/2)

Parallel Run problem:

Input

 $x_1 \ldots, x_n$

Query task

Given poly-time computable P to answer whether $\exists i : P(x_i) = yes$

Open problem: is Parallel Run tractable?

NN Proofs?

NN-proof system:

- Fix some family of basic statements about points in multidimensional space and some proof system
- Can we compute poly(|S|) statements about points of database S such that for any query q and any real nearest neighbor $p_{NN} \in S$ there is a logarithmic-size proof from precomputed statements that indeed p_{NN} is nearest point is S to q

Do such an NN proof system exist?

25 / 27

References

The Homepage of Nearest Neighbors and Similarity Search http://simsearch.yury.name

N. Goyal, Y. Lifshits, H.Schütze
Disorder Inequality: A Combinatorial Approach to Nearest Neighbor Search. Submitted. http://yury.name/papers/goyal2008disorder.pdf

B. Hoffmann, Y. Lifshits, D.Novotka
Maximal Intersection Queries in Randomized Graph Models. CSR'07.
http://yury.name/papers/hoffmann2007maximal.pdf

P. Zezula, G. Amato, V. Dohnal, M. Batko Similarity Search: The Metric Space Approach. Springer, 2006. http://www.nmis.isti.cnr.it/amato/similarity-search-book/

G.R. Hjaltason and H. Samet Index-driven similarity search in metric spaces. ACM Transactions on Database Systems, 2003 http://www.cs.utexas.edu/~abhinay/ee382v/Project/Papers/ft_gateway.cfm.pdf

Highlights

- Random walk provide logarithmic nearest neighbor search for bounded disorder sets
- SEARCH class: is it tractable?
- Do NN proof systems exist?

Thanks for your attention! Questions?

26 / 27