Combinatorial Approach to Similarity Search

Yury Lifshits Yahoo! Research

SISAP 2009

Based on joint work with Navin Goyal, Hinrich Schütze and Shengyu Zhang

Similarity Search for the Web

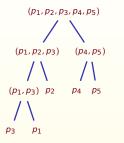
- Recommendations
- Personalized news aggregation
- Ad targeting
- "Best match" search Resumes, jobs, cars, apartments, personals
- Co-occurrence similarity Suggesting new search terms

Nearest Neighbors in Theory

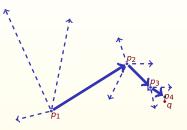
Sphere Rectangle Tree Orchard's Algorithm k-d-B tree Geometric near-neighbor access tree Excluded middle vantage point forest mvp-tree Fixed-height fixed-queries tree AESA Vantage-point tree LAESA R*-tree Burkhard-Keller tree BBD tree Navigating Nets Voronoi tree Balanced aspect ratio tree Metric tree vp^s-tree M-tree Locality-Sensitive Hashing ss-tree R-tree Spatial approximation tree Multi-vantage point tree Bisector tree mb-tree Cover tree Hybrid tree Generalized hyperplane tree Slim tree Spill Tree Fixed queries tree X-tree k-d tree Balltree Quadtree Octree Post-office tree

Theory: Four Techniques

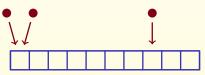
Branch and bound



Greedy walks



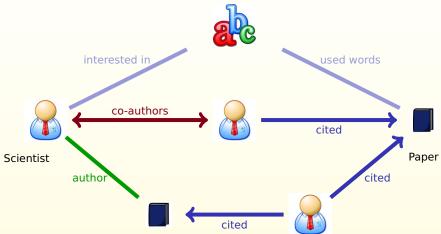
Mappings: LSH, random projections, minhashing



Epsilon nets Works for small intrinsic dimension

Revision: Similarity Function

Contributing factors for paper recommendation:



Similarity is high when:

of chains is high, chains are short, chains are heavy

Revision: Basic Assumptions

In theory:

Triangle inequality Doubling dimension is $o(\log n)$

Revision: Basic Assumptions

In theory: Triangle inequality Doubling dimension is $o(\log n)$

Typical web dataset has separation effect For almost all i, j: $1/2 \le d(p_i, p_j) \le 1$

Revision: Basic Assumptions

In theory: Triangle inequality Doubling dimension is $o(\log n)$

Typical web dataset has separation effect For almost all i, j: $1/2 \le d(p_i, p_j) \le 1$

Classic methods fail:

Branch and bound algorithms visit every object Doubling dimension is at least $\log n/2$

Contribution

Navin Goyal, YL, Hinrich Schütze, WSDM 2008:

- Combinatorial framework: new approach to data mining problems that does not require triangle inequality
- Nearest neighbor algorithm

Contribution

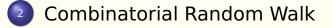
Navin Goyal, YL, Hinrich Schütze, WSDM 2008:

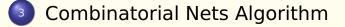
- Combinatorial framework: new approach to data mining problems that does not require triangle inequality
- Nearest neighbor algorithm

YL, Shengyu Zhang, SODA 2009:

- Better nearest neighbor search
- Detecting near-duplicates
- Navigability design for small worlds

Outline





Applications of Combinatorial Framework

1

Combinatorial Framework

Comparison Oracle

- Dataset *p*₁, . . . , *p*_n
- Objects and distance (or similarity) function are NOT given
- Instead, there is a comparison oracle answering queries of the form:

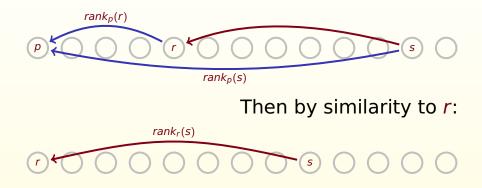
Who is closer to A: B or C?

Disorder Inequality

Sort all objects by their similarity to *p*:

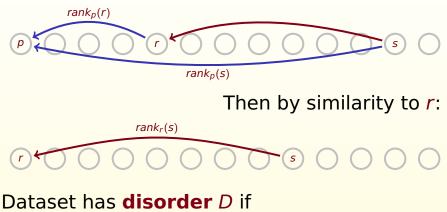
Disorder Inequality

Sort all objects by their similarity to *p*:



Disorder Inequality

Sort all objects by their similarity to *p*:



 $\forall p, r, s: rank_r(s) \leq D(rank_p(r) + rank_p(s))$

Combinatorial Framework

Comparison oracle Who is closer to A: B or C? + Disorder inequality $rank_r(s) \leq D(rank_p(r) + rank_p(s))$

Combinatorial Framework: FAQ

- Disorder of a metric space? Disorder of ^k?
- In what cases disorder is relatively small?
- Experimental values of *D* for some practical datasets?

Disorder vs. Others

- If expansion rate is c, disorder constant is at most c²
- Doubling dimension and disorder dimension are incomparable
- Disorder inequality implies combinatorial form of "doubling effect"

Combinatorial Framework: Pro & Contra

Advantages:

- Does not require triangle inequality for distances
- Applicable to any data model and any similarity function
- Require only comparative training information

Combinatorial Framework: Pro & Contra

Advantages:

- Does not require triangle inequality for distances
- Applicable to any data model and any similarity function
- Require only comparative training information

Limitation: worst-case form of disorder inequality

2

Combinatorial Random Walk

Hierarchical greedy navigation:

Start at random city p1

- Start at random city p₁
- Among all airlines choose the one going most closely to q, move there (say, to p₂)

- Start at random city p₁
- Among all airlines choose the one going most closely to q, move there (say, to p₂)
- Among all railway routes from p₂ choose the one going most closely to q, move there (p₃)

- Start at random city p₁
- Among all airlines choose the one going most closely to q, move there (say, to p₂)
- Among all railway routes from p₂ choose the one going most closely to q, move there (p₃)
- Among all bus routes from p₃ choose the one going most closely to q, move there (p₄)

- Start at random city p₁
- Among all airlines choose the one going most closely to q, move there (say, to p₂)
- 3 Among all railway routes from p_2 choose the one going most closely to q, move there (p_3)
- Among all bus routes from p₃ choose the one going most closely to q, move there (p₄)
- Repeat this log n times and return the final city

Set $D' = 6D \log \log n$ For every object p in database S choose at random:

- D' pointers to objects in S = B(p, n)
- D' pointers to objects in $B(p, \frac{n}{2})$

. . .

Set $D' = 6D \log \log n$ For every object p in database S choose at random:

- D' pointers to objects in S = B(p, n)
- D' pointers to objects in $B(p, \frac{n}{2})$

. . .

Set $D' = 6D \log \log n$ For every object p in database S choose at random:

- D' pointers to objects in S = B(p, n)
- D' pointers to objects in $B(p, \frac{n}{2})$

. . .

Set $D' = 6D \log \log n$ For every object p in database S choose at random:

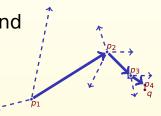
- D' pointers to objects in S = B(p, n)
- D' pointers to objects in $B(p, \frac{n}{2})$

. . .

Ranwalk: Search via Greedy Walk

- Start at random point p₀
- Check endpoints of 1st level pointers, move to the best one p₁

 Check all *D* endpoints of bottom-level pointers and return the best one *p*_{log n}



Analysis of Ranwalk

Assume that database points together with query point $S \cup \{q\}$ satisfy disorder inequality with constant D:

 $\operatorname{rank}_{x}(y) \leq D(\operatorname{rank}_{z}(x) + \operatorname{rank}_{z}(y)).$

Then for any error probability δ Ranwalk will use the following resources:

- Preprocessing space: $O(D \log n (\log \log n + \log 1/\delta))$
- Preprocessing time: $\mathcal{O}(n^2 \log n)$
- Search time $\mathcal{O}(D \log n (\log \log n + \log 1/\delta) + D^3)$

3 Combinatorial Nets Algorithm

Navigating DAG

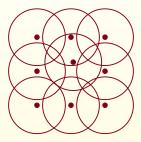
- log n layers
- $C_{i-1} \subset C_i$
- Down-degree is bounded (poly(D))
- Search via "greedy dive"

Combinatorial Net

A subset $R \subseteq S$ is called a **combinatorial** *r*-net iff the following two properties holds:

Covering: $\forall y \in S, \exists x \in R, \text{ s.t. rank}_x(y) < r.$

Separation: $\forall x_i, x_j \in R$, rank_{xi}(x_j) $\geq r$ OR rank_{xi}(x_i) $\geq r$

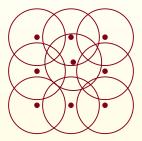


Combinatorial Net

A subset $R \subseteq S$ is called a **combinatorial** *r*-net iff the following two properties holds:

Covering: $\forall y \in S, \exists x \in R$, s.t. rank_x(y) < r.

Separation: $\forall x_i, x_j \in R$, rank_{xi}(x_j) $\geq r$ OR rank_{xi}(x_i) $\geq r$



How to construct a combinatorial net? What upper bound on its size can we guarantee?

Basic Data Structure

Combinatorial nets: For every $0 \le i \le \log n$, construct a $\frac{n}{2^i}$ -net

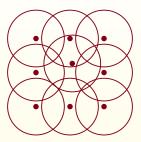
Basic Data Structure

Combinatorial nets: For every $0 \le i \le \log n$, construct a $\frac{n}{2^i}$ -net

Pointers, pointers, pointers:

- Direct & inverted indices: links between centers and members of their balls
- Cousin links: for every center keep pointers to close centers on the same level
- Navigation links: for every center keep pointers to close centers on the next level

Fast Net Construction



Theorem

Combinatorial nets can be constructed in $O(D^7 n \log^2 n)$ time

Up'n'Down Trick

Assume your have 2r-net for the dataset

To compute an *r*-ball around some object *p*:

- 1 Take a center p' of 2r ball that is covering p
- Take all centers of 2r-balls nearby p'
- For all of them write down all members of theirs 2r-balls
- Sort all written objects with respect to p and keep r most similar ones.

Search by Combinatorial Nets

- log n layers
- $C_{i-1} \subset C_i$
- Down-degree is bounded (poly(D))
- Search via "greedy dive"

Navigating DAG:

- Layer *i*: combinatorial net with radius $n/2^{i}$
- Down-links from *p*: members of next layer i+1 having rank to *p* at most $3D^2 \frac{n}{2^{i+1}}$

Analysis of Combinatorial Nets

Assume $S \cup \{q\}$ has disorder constant D

Theorem

There is a deterministic and exact algorithm for nearest neighbor search:

- Preprocessing: $\mathcal{O}(D^7 n \log^2 n)$
- Search: $\mathcal{O}(D^4 \log n)$

Applications of Combinatorial Framework

Near-Duplicates

Assume, comparison oracle can also tell us whether $\sigma(x, y) > T$ for some similarity threshold T

Theorem

All pairs with over-T similarity can be found deterministically in time

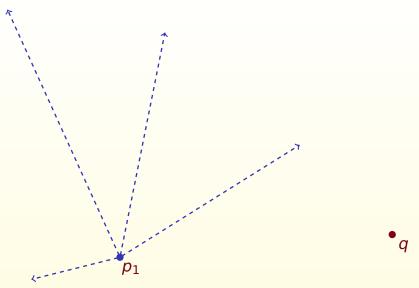
 $poly(D)(n \log^2 n + |Output|)$

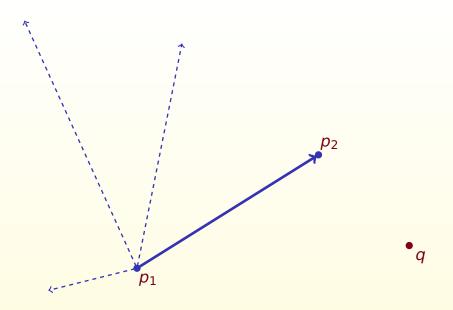
Visibility Graph

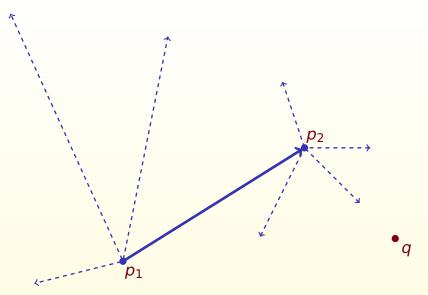
Theorem

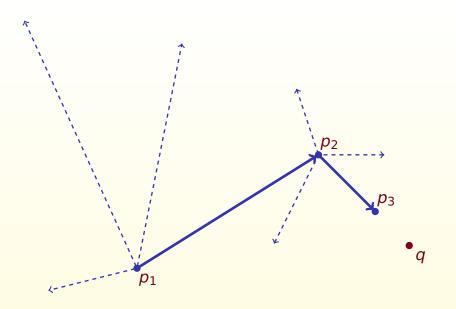
For any dataset S with disorder D there exists a **visibility graph**:

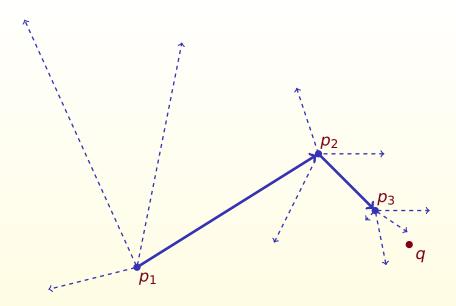
- poly(D)n log² n construction time
- $\mathcal{O}(D^4 \log n)$ out-degrees
- Naïve greedy routing deterministically reaches exact nearest neighbor of the given target q in at most log n steps

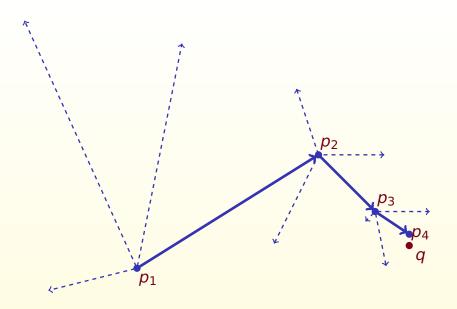












Definition of Visibility

A center c_i in the $\frac{n}{2^i}$ -net is visible from some object p iff

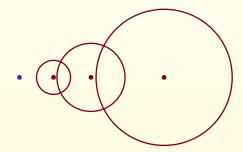
 $rank_p(c_i) \leq 3D^2 \frac{\pi}{2^i}$

Definition of Visibility

A center c_i in the $\frac{n}{2^i}$ -net is visible from some object p iff

 $rank_p(c_i) \le 3D^2 \frac{n}{2^i}$

Interpretation: the farther you are the larger radius you need to be visible

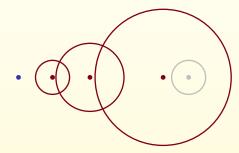


Definition of Visibility

A center c_i in the $\frac{n}{2^i}$ -net is visible from some object p iff

 $rank_p(c_i) \le 3D^2 \frac{n}{2^i}$

Interpretation: the farther you are the larger radius you need to be visible



Directions for Further Research

Future of Combinatorial Framework

- What if disorder inequality has exceptions?
- Insertions, deletions, changing metric
- Experiments & implementation
- Metric transformations
- Unification challenge: disorder + doubling = ?

Summary

- Combinatorial framework: comparison oracle + disorder inequality
- New algorithms:

Nearest neighbor search Deterministic detection of near-duplicates Navigability design

Summary

- Combinatorial framework: comparison oracle + disorder inequality
- New algorithms:

Nearest neighbor search Deterministic detection of near-duplicates Navigability design

Thanks for your attention! Questions?

Links

http://yury.name

http://simsearch.yury.name

Tutorial, bibliography, people, links, open problems

Yury Lifshits and Shengyu Zhang

Combinatorial Algorithms for Nearest Neighbors, Near-Duplicates and Small-World Design

http://yury.name/papers/lifshits2008similarity.pdf

Navin Goyal, Yury Lifshits, Hinrich Schütze Disorder Inequality: A Combinatorial Approach to Nearest Neighbor Search http://yury.name/papers/goyal2008disorder.pdf

Benjamin Hoffmann, Yury Lifshits, Dirk Novotka Maximal Intersection Queries in Randomized Graph Models http://yury.name/papers/hoffmann2007maximal.pdf