
On the Computational Complexity of
Embedding of Compressed Texts

Diploma Thesis of Yury Lifshits

June 2005

Abstract

In this work we consider a well-known problem of processing of com-
pressed texts. We study the following question (called Embedding): whether
one compressed text is a subsequence of another compressed text? In this
paper we show that Embedding is NP- and co-NP-hard.

1 Introduction

The size of information flows is quickly growing. Therefore processing of
different compressed objects becomes important. Compressed trees, pictures,
charts are studied now. One of the central notions is a text compression.
In 1977 Lempel and Ziv proposed their model of compression [?] which is
now classical. In ninetieth in many works a grammar-based compression
(straight-line programs) was studied. Here we also investigate the straight-
line programs.

1.1 Main notions and problems

We consider a finite alphabet Σ. A word is any finite sequence of its letters.
The set of all words is traditionally denoted by Σ∗.

The basic notion of our work is straight-line program. Roughly, straight-
line program is a context-free grammar generating only one word.

Definition 1. A straight-line program (SLP) is a context-free grammar P
with ordered non-terminal symbols X1, . . . , Xm (Xm is a starting symbol)

1

such that there is only one production for each symbol: either Xi → a,
where a is a terminal, or Xi → XjXk for some j, k < i.

For straight-line program P we denote by eval(P) the unique word gen-
erated by P . Therefore eval(P) = eval(Xm).

Let us explain the origin of the term “straight-line program”. The reason
is that any text presented by a grammar ofthe type described above could be
generated by a program using only one operator — assignment statement.

The main problems about compressed texts are the following:

• Compressed Equivalence: given two compressed texts, determine
whether they are equal or not.

• Compressed Pattern Matching: given a pattern and a compressed
text, determine whether the pattern is a subword of the text.

• Fully Compressed Pattern Matching: given a compressed pat-
tern and a compressed text, determine whether the pattern is a subword
of the text.

• Membership: let a language L be fixed. Given a compressed word,
determine whether it belongs to L.

Many papers deal with these problems [?, ?, ?, ?]. First three problems
have polynomial complexity. In the case of regular language, Member-
ship is also solvable in polynomial time. But Membership for context-free
language is already PSPACE-complete [?]. After studying these basic ques-
tions, one started to search for effective algorithms for other problems. The
following problem is very close to Fully Compressed Pattern Matching:

• Compressed Subsequence Matching (for short — Embedding).
Given a compressed string P (pattern) and a compressed string T
(text), determine whether letters of P form a subsequence of T (we
denote this property by P ↪→ T).

A
A

A
A

AK 6

¢
¢
¢
¢
¢̧

¡
¡

¡
¡

¡µ

P

T

2

Till now there was no complexity bounds for Embedding. It might be
solvable in polynomial time as well as PSPACE-complete. In present work
we obtain lower bounds showing that this problem is NP-hard and even
(assuming that NP 6= co−NP) does not belong to NP .

1.2 Related work

In the paper [?], based on [?], a polynomial algorithm for Fully Compressed
Pattern Matching was constructed. Also, authors presented a polynomial
algorithm for Membership in the case of regular language.

It was showed recently [?] that Membership is P-complete in the case
of regular language.

Another important result was obtained in [?]. For any given text an
approximately shortest SLP generating this text was constructed. More for-
mally, there was constructed an algorithm working in time O(n · log |Σ|)
which for any given text of length n computes O(log n)-approximation of
minimal SLP generating this text. This means that the adequate (close to
the minimal possible) compression in a grammar-based model could be done
efficiently.

Next, we should mention [?], where Compressed Pattern Matching
problems were extended to the two-dimensional case. It was found that com-
plexity increases by such generalization. Compressed Pattern Match-
ing is NP-complete while Fully Compressed Pattern Matching is ΣP

2 -
complete.

Another generalization was considered in [?]. Recall that strings are
elements of a free finitely generated monoid. In this paper processing of
compressed monoid elements for various classes of finitely generated monoids
were studied. Depending on the nature of monoid, the completeness results
for Compressed Equivalence were obtained for complexity classes P , co-
NP , PSPACE and EXPSPACE .

Recently, applications for algorithms on compressed texts in analysis of
message sequence charts were found, see [?].

We refer to [?, ?] for the surveys on compressed texts processing.

1.3 Motivation and our results

In the case of normal (uncompressed) texts the complexity of subsequence
matching is linear, hence this problem is not harder than pattern match-

3

ing. After discovering of the polynomial algorithm for pattern matching in
compressed texts, The problem of existence of analogous algorithm for sub-
sequence matching becomes quite natural. Using the standard assumption
P 6= NP , we prove in our paper that such algorithm does not exist.

1.4 Scheme of proofs

There are two main results in the paper. We start with a (many-one) re-
duction of the known NP-complete problem Subset Sum to Embedding.
Hence we obtain NP-hardness of the latter. The next step is a reduction of
Embedding to Non-embedding and vice versa. Co-NP-hardness of our
problem is immediate corollary of such symmetry.

2 NP-hardness

Let us recall the well-known NP-complete problem Subset Sum (see [?]):

• Given integers w1, . . . , wn, t in binary form, determine whether there
exist x1, . . . , xn ∈ {0, 1} such that

∑n
i=1 xi · wi = t.

Theorem 1. There is a reduction (in the sense of Karp) from Subset Sum
to Embedding.

Proof. Let t, w̄ = 〈w1, . . . , wn〉 be input data for Subset Sum (let us consider
only n > 1). We are going to construct straight-line programs F and G such
that there exists a subset of w̄ with sum equal to t iff eval(F) ↪→ eval(G).

We begin with some notation. Let s = w1 + · · · + wn and N = 2ns. For
every subset of w̄ there is a corresponding string x = x1 . . . xn of length n
consisting of zeroes and ones and therefore also a corresponding integer in
the range from 0 to 2n − 1. Let us denote x ◦ w̄ =

∑n
i=1 xiwi, in fact, x ◦ w̄

is a sum of the subset corresponding to x.
Step 1: construction of texts G and F .

G = G5N
0 G0 = G1G2G3G4

G1 =
2n−1∏
x=0

(10s) = (10s)2n

G2 = 02N

4

G3 =
2n−1∏
x=0

(0x◦w̄10s−x◦w̄) G4 = 0t+1

F = F 5N−1
0 F0 = 103N+t10N+1

We use symbol
∏

to denote the concatenation of corresponding words per-
formed in order of index changing from the lower bound to the upper one.

By these equalities we define texts F and G. Below we will prove that
they could be generated by straight-line programs F and G. But before let
us prove that embedding of F into G is equivalent to the existence of a subset
of w̄ with sum equal to t.

Step 2: equivalence of embedding and existence of subset with required
sum.

“Subset exists ⇒ embedding holds”. Let x be an integer corresponding
to a subset of w̄ with sum equal to t, i.e., x ◦ w̄ = t. Consider the beginning
of G, that is G1G2G3G4G1 . . . and take the following embedding of F0 in G:
take 1 in x-th block of G1, then take 3N + t zeroes, then (exactly because
x ◦ w̄ = t) the next letter is 1. Taking following N + 1 zeroes, we find
ourselves before x-th one in the second copy of G1. Thus having 5N groups
G0 = G1G2G3G4 we can embed 5N − 1 copies of F0. And that is what we
need to prove: F ↪→ G.

G1 G2 G3 G4

︸ ︷︷ ︸
N zeroes

︸ ︷︷ ︸
2N

︸ ︷︷ ︸
N zeroes

︸ ︷︷ ︸
t+1

10...0 10...0 0 . . . 0 ..010.. 0 . . . 0 . . .

“Embedding holds ⇒ subset exists”. We have F ↪→ G. Our aim is to
prove that the answer to Subset Sum problem is positive. Assume the
converse. Then we will find a contradiction by counting zeroes in F and G,
as follows.

Not every zero in G is an embedding image of some zero in F . Let us
estimate the total number of such unused zeroes. Our embedding consists of
5N − 1 disjoint embeddings of F0 in G.

There are two ones in F0 and there are exactly 3N + t zeroes between
them. We claim that there is no such pair of ones (with exactly 3N + t ones
between them) in G. Assume the converse, that there exists such a pair.
Consider two cases depending on the location of the left one.

5

If this one is in G1 block (say subblock number y), then after shifting by
3N +t zeroes to the right we come to the y-th subblock in G3. If after t zeroes
in this subblock there is a one, then y ◦ w̄ = t. Hence we get a contradiction
with assumption of negative answer to Subset Sum problem.

G1 G3

10...0 ..010..

y-th subblock y-th subblock

︸ ︷︷ ︸
3N+t zeroes

In the second case the left one in our pair is situated in G3. Then shifting by
3N + t zeroes to the right we get into the block G2 where is no ones at all.

G1 G2G3 G4

N zeroes 2N zeroesN zeroest + 1

10...0 0 . . . 0

Therefore in each embedding of F0 in G between two ones there is at
least one zero which is not used. To complete the proof we estimate the
number of zeroes in G from two sides. By construction, this number is equal
to 5N · (4N + t+1). From the other hand, each F0 contains 4N + t+1 zeroes
and also there are at least 5N − 1 unused zeroes in G. Putting all together,
total number of zeroes in G must be greater than or equal to

(5N−1)·(4N+t+1)+5N−1 = 5N ·(4N+t+1)+(N−t−2) > 5N ·(4N+t+1).

Let us explain the last inequality: N = s2n ≥ 4s > t + 2. Thus the number
of zeroes in G must be greater than the actual quantity. This contradiction
completes the proof.

Step 3: generation of F and G by straight-line programs. Note that with
one exception F and G are constructed from 0 and 1 only by a polynomial
number of concatenations and raising to a power (in our construction all
power degrees have polynomial length in binary form). These constructions
could be directly realized by SLP. The only nontrivial block is G3. A genera-
tion of G3 by SLP of polynomial size was proposed for first time by M. Lorhey
[?]. We repeat it here for completeness.

The SLP generating

G3 =
2n−1∏
x̄=0

(0x◦w̄10s−x◦w̄).

6

is as follows:
S1 → 10s+w11

Sk+1 → Sk0
s−sk+wk+1Sk.

Let Sn be a starting symbol. We prove that eval(Sn) = G3.

Claim: eval(Sk) =

(
∏

x̄∈{0,1}k\{1̄k}
(0x̄·w̄k10s−x̄·w̄k)

)
0sk1.

We now prove it by induction. For k = 1 our claim means that 10s+w11 =
0010s−00s11 which is true. For k + 1 ≤ n we get the following chain of
equalities:

eval(Sk+1) =

 ∏

x̄∈{0,1}k+1\{1̄k+1}
(0x̄·w̄k+110s−x̄·w̄k+1)

 0sk+11 =

 ∏

x̄∈{0,1}k

(0x̄·w̄k10s−x̄·w̄k)

︸ ︷︷ ︸
eval(Sk)0s−sk

 ∏

x̄∈{0,1}k\{1̄k}
(0x̄·w̄k+wk+110s−x̄·w̄k−wk+1)

 0wk+10sk1

︸ ︷︷ ︸
0wk+1eval(Sk)

=

eval(Sk)0
s−sk+wk+1eval(Sk) = eval(Sk+1),

which proves the claim.
To complete the proof take our claim for k = n:

eval(Sn) =
∏

x̄∈{0,1}n

(
0x̄·w̄10s−x̄·w̄)

= G3.

Step 4: reduction could be done in polynomial time. The last thing to
prove is that the construction of SLP generating F and G from the input
data of Subset Sum problem could be done in polynomial time. Note that
in construction of SLP generating F and G we use only concatenations and
rising to a power. All power degrees are results of arithmetical operations on
t and w1, . . . , wn.

Corollary 1. Embedding is NP-hard.

3 co-NP-hardness

Theorem 2. There are reductions (in the sence of Karp) of Embedding to
Non-embedding and of Non-embedding to Embedding.

7

Proof. We now prove the following: there exists a polynomial algorithm that
for any given compressed texts F and G produces compressed texts F1 and
G1 such that

F ↪→ G ⇔ F1 6↪→ G1. (∗)
Naturally that their total (compressed) size is at most polynomially larger
than that of F and G.

In the case of unary alphabet both problems belong to P . Therefore we
consider only the alphabets containing at least two letters. Note that we
can compute last letter of F in polynomial time and add to the end of G
a different letter (getting G′). Still after this F ↪→ G ⇔ F ↪→ G′. Thus,
without loss of generality, we can consider only the cases where the last letters
of F and G are different.

Let F = f1 . . . fk, G = g1 . . . gm. For every letter of alphabet a we denote
Xa = (Σ/a)m+1, where (Σ/a) is a concatenation of all letters of alphabet
except a in some (arbitrary) order.

Construction:
F1 = G = g1 . . . gm

G1 = Xf1f1 . . . Xfk
fk

Proof of property (∗): represent G in the following form (clearly it is
unique): G = R1f1 . . . RlflRl+1, where Ri does not contain letter fi. The
statement F ↪→ G is equivalent to the equality l = k in our representation.

If l < k, then F1 ↪→ G1. Actually for every 1 ≤ i ≤ l + 1 it is true that
Ri ↪→ Xfi

and fi = fi.

? ? ?? ?

Xf1f1 Xfl
flXfl+1

. . .

R1f1R2X2 RlflRl+1

Let now l = k. By assumption gm is not equal to fk. Then Rl+1 6= ∅.
We claim that

R1f1 . . . Rifi 6↪→ Xf1f1 . . . Xfi
. (∗∗)

Our proof goes by induction on i. In the case i = 1 this follows from f1 6↪→
Xf1 . Step i → i + 1: assume that there is an embedding for i + 1. Recall
that fk+1 6↪→ Xfk+1

. Thus fk+1 is not embedded to the right from fk and
we also get an embedding (∗∗) for i. Thus we get a contradiction with
induction assumption. The claim (∗∗) is proved. Combining (∗∗) for i = k
and observation Rk+1 6↪→ fk we have F1 6↪→ G1.

8

? ¡ª®

©
ª

®

©
ª

Xf1f1 Xfk
fk

R1f1 RkfkRk+1

We now prove that reduction is polynomial. Notice that Xa could be
constructed in polynomial (w.r.t. log m) time. To complete the construction
of G1 we add rules like A → Xaa for every letter in the alphabet and use these
non-terminal symbols instead of the corresponding letters in our SLP.

Corollary 2. Embedding is co-NP-hard.

Proof. By Theorem 1 Embedding is NP-hard. Since we proved our hard-
ness result using reduction in the sense of Karp, Non-embedding is co-NP-
hard. Recall that we already constructed a reduction from Non-embedding
to Embedding (Theorem 2). Thus Embedding is also co-NP-hard.

4 Conclusion and open problems

In our paper we considered the problem of subsequence search in compressed
texts. We obtained lower bounds for computational complexity of this prob-
lem. Specifically, we gave a proof (under assumption that NP 6= co−NP)
that this problem does not belong to NP . From the other side, only trivial
upper bound is known: there is an algorithm in PSPACE . The main open
problem is to close this gap.

References

[1] Piotr Berman, Marek Karpinski, Lawrence L. Larmore, Wo-
jciech Plandowski and Wojciech Rytter. On the Complexity of
Pattern Matching for Highly Compressed Two-Dimensional Texts, Jour-
nal of Computer and Systems Science, vol. 65, number 2, pp. 332–350,
2002.

[2] M.R. Garey and D.S. Johnson. Computers and Intractability: a
Guide to the Theory of NP-completeness, Freeman, 1979.

[3] Leszek Gasieniec, Marek Karpinski, Wojciech Plandowski
and Wojciech Rytter. Efficient Algorithms for Lempel-Ziv Encoding

9

(Extended Abstract), Proceedings of the 5th Scandinavian Workshop on
Algorithm Theory (SWAT 1996), Springer-Verlag, LNCS 1097, pp. 392–
403, 1996.

[4] Blaise Genest and Anca Muscholl. Pattern Matching and Mem-
bership for Hierarchical Message Sequence Charts, In Proceedings of
the 5th Latin American Symposium on Theoretical Informatics (LATIN
2002), Springer-Verlag, LNCS 2286, pp. 326–340, 2002.

[5] Markus Lorhey. Word problems on compressed word, ICALP 2004,
Springer-Verlag, LNCS, 3142, pp. 906–918, 2004.

[6] N. Markey and Ph. Schnoebelen. A PTIME-complete matching
problem for SLP-compressed words, Information Processing Letters, vol.
90, number 1, pp. 3–6, 2004.

[7] Wojciech Plandowski. Testing Equivalence of Morphisms on
Context-Free Languages, Second Annual European Symposium on Al-
gorithms (ESA’94), Utrecht (The Netherlands), Springer-Verlag, LNCS
855, pp. 460–470, 1994.

[8] Wojciech Plandowski and Wojciech Rytter. Complexity of
Language Recognition Problems for Compressed Words, Jewels are For-
ever, Contributions on Theoretical Computer Science in Honor of Arto
Salomaa, Springer-Verlag, pp. 262–272, 1999.

[9] Wojciech Rytter. Algorithms on Compressed Strings and Arrays,
Proceedings of the 26th Conference on Current Trends in Theory and
Practice of Informatics (SOFSEM’99), Springer-Verlag, LNCS 1725, pp.
48–65, 1999.

[10] Wojciech Rytter. Compressed and fully compressed pattern match-
ing in one and two dimensions, Proceedings of the IEEE, vol. 88, number
11, pp. 1769–1778, 2000.

[11] Wojciech Rytter. Application of Lempel-Ziv factorization to the ap-
proximation of grammar-based compression, Theoretical Computer Sci-
ence, vol. 302, number 1–3, pp. 211–222, 2003.

[12] Wojciech Rytter. Grammar Compression, LZ-Encodings, and String
Algorithms with Implicit Input, Proceedings of the 31st International

10

Colloquium on Automata, Languages and Programming(ICALP 2004),
Springer-Verlag, LNCS 3142, pp. 15–27, 2004.

[13] J. Ziv and A. Lempel. A universal algorithm for sequential data com-
pression, IEEE Transactions on Information Theory, vol. 23, number 3,
pp. 337-343, 1977.

11

