Economics of Web-Design

Yury Lifshits

Caltech

http://yury.name

CS Club, Steklov Institute, 2008

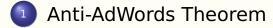
A camel is a horse designed by a committee

Vogue'1958

A camel is a horse designed by a committee

Vogue'1958

Less is more


A camel is a horse designed by a committee

Vogue'1958

Less is more

1855, Robert Browning (English poet)

Outline

Outline

Anti-AdWords Theorem

Dynamic Design

Outline

- Anti-AdWords Theorem
- Dynamic Design
- Hit Counter Project Proposal

1

Anti-AdWords Theorem

Problem Statement

Given 10 organic search results and 5 sponsored results place them on 15 slots on a webpage

Math model (1/2)

```
Every link i:

Price p<sub>i</sub>

Relevance r<sub>i</sub>
```

Math model (1/2)

```
Every link i:

Price p<sub>i</sub>

Relevance r<sub>i</sub>

Attractiveness a<sub>i</sub>
```

Math model (1/2)

```
Every link i:

Price p<sub>i</sub>

Relevance r<sub>i</sub>

Attractiveness a<sub>i</sub>
```

Every slot *j*: Attention share *s_j*

Math Model (2/2)

Matching M:
Place every link i to slot j = M(i)

Math Model (2/2)

Matching M:

Place every link i to slot j = M(i)

User clicks on link i with probability proportional to $S_{M(i)} + a_i$

Expected relevance:

Expected relevance:

$$Rel(M) = \sum_{i=1}^{15} (s_{M(i)} + a_i) \cdot r_i$$

Expected relevance:

$$Rel(M) = \sum_{i=1}^{15} (s_{M(i)} + a_i) \cdot r_i$$

Expected revenue:

Expected relevance:

$$Rel(M) = \sum_{i=1}^{15} (s_{M(i)} + a_i) \cdot r_i$$

Expected revenue:

$$Rev(M) = \sum_{i=1}^{15} (s_{M(i)} + a_i) \cdot p_i$$

Expected relevance:

$$Rel(M) = \sum_{i=1}^{15} (s_{M(i)} + a_i) \cdot r_i$$

Expected revenue:

$$Rev(M) = \sum_{i=1}^{15} (s_{M(i)} + a_i) \cdot p_i$$

Attractiveness is not important

Pareto-Optimal Matching

M is Pareto-Optimal iff there is no M' such that

Pareto-Optimal Matching

M is Pareto-Optimal iff there is no M' such that Rel(M) < Rel(M'), Rev(M) < Rev(M')

Otherwise *M* is stupid

Example (1/2)

Attention	Link	Relevance	Price
50%	01	2	-
40%	A1	0	25\$
10%	A2	1	20\$
		1.1	12\$

Example (2/2)

Attention	Link	Relevance	Price
50%	A2	1	20\$
40%	01	2	-
10%	A1	0	25\$
		1.3	12.5\$

Anti-AdWords

Left — organic, right — advertising

Anti-AdWords

Left — organic, right — advertising

Under presented model AdWords design can be stupid

Anti-AdWords

Left — organic, right — advertising

Under presented model AdWords design can be stupid

That is, another presentation can improve **both** relevance and revenue

Notation

Page attention structure \mathcal{P} :

20% 18% 15% ... 4% 2%

Notation

Page attention structure \mathcal{P} :

20% 18% 15% ... 4% 2%

Fixed design \mathcal{D} : Ad slots, organic slots

20% 18% 15% ... 4% 2%

Anti-AdWords Theorem

 $\forall \mathcal{P} \quad \forall^* \mathcal{D}$ 3 links \mathcal{L} such that any matching $M \in \mathcal{D}$ is stupid for \mathcal{L}

Alternative to AdWords

Single list for sponsored and organic results

Alternative to AdWords

Single list for sponsored and organic results

Tradeoff ranking

Do we need to keep 10 Organic guarantee?

Do we need to keep 10 Organic guarantee?

Adwords redundancy?

Do we need to keep 10 Organic guarantee?

Adwords redundancy?

Quantify possible Adwords inprovements

Do we need to keep 10 Organic guarantee?

Adwords redundancy?

Quantify possible Adwords inprovements

Find all rankings on a trade-off curve

2

Dynamic Design

Increase Key Numbers

- Owners utility
- User utility

Key Numbers for Owner

Key Numbers for Owner

- Ad revenue
- Number of users
- Volume of content
- Amount of feedback
- User time online
- Brand recognition

Key Numbers for User

Key Numbers for User

- # of matches (dating)
- # of job offers
- # of answers (QA)
- # interesting stories (news)
- # of compliments (social networks)

Design
=
tool for increasing
key numbers

Main Challenge

Main Challenge

Quantify Design

Design Decisions

- What to display
- With what priorities?

Quantify Internal Priorities

Attention budgets and auctions

Dynamic Design

Choices based on opportunity (user, action, time) knowledge

Design Mechanisms

Design Mechanisms

- Chosen by owner
- Fresh
- User voted
- Random
- Personalized
- Paid

Minimalism?

- Design complexity = # of links
- Links with CTR < .001 are worse than ads
- One random big instead many static small

Links to kill

- Amazon: "Add to wedding registry"
- Google: "Report yourself"
- Yahoo: "Horoscopes"

Django MTV Tricks

- Template inheritance
- If/for loops in templates
- Exceptions

3

Hit Counter Project Proposal

Hit Analysis

- Easy: incoming hits
- Hard: outgoing hits

Ajax solution

Ajax solution

Can be blocked

Ajax solution

Can be blocked

Inverted index

Ajax solution

Can be blocked

Inverted index

Ajax solution
 Can be blocked

Inverted index
 Internal hits only

Goto

Ajax solution

Can be blocked

Inverted index
 Internal hits only

Goto

Bad for SEO

Call for Feedback

Volunteers for hit counter project?

Links

```
http://yury.name
Homepage
```

http://yury.name/newweb.html

Tutorial "The New Web"

http://yury.name/reputation.html

Tutorial "Reputation Systems"

Thanks for your attention! Questions?